Baca Komik Manga Gratis yok

May 29, 2010

hahahah…😀 santai aja kawan kita gak usah baca komik manga terutama naruto dengan cara beli atau meminjam dan menyewa karena ada aja situs buat kita bisa baca komik dengan gratis tapi saya gak yakin klo bayar internetnya ntar gratis…. nie gue beri linknya. dijamin puas… hahahha😀

Virus game online

May 29, 2010

Tak kusangka ternyata, anak-anak yang baru sekolah di TK (taman kanak-kanak) juga pada bisa main game online. ketika saya ikut bermain memang eh, mereka tidak terlalu hebat memainkannya, namannya aja anak kecil, besar bentuk mouse komputernya dibandingkan tangannya, tetapi ada saja anak kecil yang bermain dengan santai dan ahli, ibaratnya hanya sebagai mainan biasa-biasa saja buat mereka, sedangkan musuh mereka orang yang lebih tua dari mereka pada kalah dibuatnya….. hahahahah🙂

memang tidak terlalu susah memainkannya, tetapi yang susah jika ada orang yang ketika kita sedang main dia mengintip dengan memasang muka yang tak bersalah, dasar anak kecil, ibaratnya kecil-kecil cabe pangsit, eh rawit maksudnya.. hahahhaha

Besaran dan Satuan

May 13, 2010

Pengertian Besaran

Besaran adalah segala sesuatu yang dapat diukur atau dihitung, dinyatakan dengan angka dan mempunyai satuan.
Dari pengertian ini dapat diartikan bahwa sesuatu itu dapat dikatakan sebagai besaran harus mempunyai 3 syarat yaitu

  1. dapat diukur atau dihitung
  2. dapat dinyatakan dengan angka-angka atau mempunyai nilai
  3. mempunyai satuan

Bila ada satu saja dari syarat tersebut diatas tidak dipenuhi maka sesuatu itu tidak dapat dikatakan sebagai besaran.

Besaran berdasarkan cara memperolehnya dapat dikelompokkan menjadi 2 macam yaitu :

  1. Besaran Fisika yaitu besaran yang diperoleh dari pengukuran. Karena diperoleh dari pengukuran maka harus ada alat ukurnya. Sebagai contoh adalah massa. Massa merupakan besaran fisika karena massa dapat diukur dengan menggunakan neraca.
  2. Besaran non Fisika yaitu besaran yang diperoleh dari penghitungan. Dalam hal ini tidak diperlukan alat ukur tetapi alat hitung sebagai misal kalkulator. Contoh besaran non fisika adalah Jumlah.

Besaran Fisika sendiri dibagi menjadi 2

Besaran Pokok dan Turunan

1. Besaran Pokok adalah besaran yang ditentukan lebih dulu berdasarkan kesepatan para ahli fisika. Besaran pokok yang paling umum ada 7 macam yaitu Panjang (m), Massa (kg), Waktu (s), Suhu (K), Kuat Arus Listrik (A), Intensitas Cahaya (cd), dan Jumlah Zat (mol). Besaran pokok mempunyai ciri khusus antara lain diperoleh dari pengukuran langsung, mempunyai satu satuan (tidak satuan ganda), dan ditetapkan terlebih dahulu.

2. Besaran Turunan adalah besaran yang diturunkan dari besaran pokok. Besaran ini ada banyak macamnya sebagai contoh gaya (N) diturunkan dari besaran pokok massa, panjang dan waktu. Volume (meter kubik) diturunkan dari besaran pokok panjang, dan lain-lain. Besaran turunan mempunyai ciri khusus antara lain : diperoleh dari pengukuran langsung dan tidak langsung, mempunyai satuan lebih dari satu dan diturunkan dari besaran pokok.

Kinematika gerak lurus

May 13, 2010

Kinematika adalah ilmu yang membahas tentang gerak tanpa meninjau penyebab terjadinjya gerak. Setiap Hari kita berangkat dari rumah ke tempat kerja atau ke sekolah, tanpa kita sadari kita telah melakukan pergerakan atau perpindahan kedudukan dari rumah ke kantor atau sekolah. Hal yang demikian dikatakan kita melakukan perpindahan/bergerak.

Dalam kehidupan sehari-hari kata jarak dan perpindahan digunakan untuk arti yang sama. Dalam Fisika kedua kata itu memiliki arti yang berbeda. Namun sebelum kita membahas hal ini, kita pelajari dulu apa yang dimaksud dengan gerak.

kita lihat ja selengkapnya di blog Fisikarudy.com tentang Kinematika gerak lurus

Jarak dan Perpindahan

Bayangkan Anda berada di pinggir jalan lurus dan panjang. Posisi Anda saat itu di A.

Gambar 1.1: Posisi benda dalam sumbu koordinat

Dari A, Anda berjalan menuju C melalui B. Sesampainya Anda di C, Anda membalik dan kembali berjalan lalu berhenti di B.

Pada peristiwa di atas, berapa jauhkah jarak yang Anda tempuh; berapa pula perpindahan Anda? Samakah pengertian jarak dengan perpindahan?

Dalam kehidupan sehari-hari kata jarak dan perpindahan digunakan untuk arti yang sama. Dalam Fisika kedua kata itu memiliki arti yang berbeda. Namun sebelum kita membahas hal ini, kita pelajari dulu apa yang dimaksud dengan gerak.

Gerak Lurus Beraturan (GLB)
Gerak lurus beraturan (GLB) adalah gerak benda dalam lintasan garis lurus dengan kecepatan tetap. Untuk lebih memahami konsep ini lebih lanjut anda dapat mengakses materi tentang kinemtika disini

Gerak Lurus Berubah Beraturan (GLBB)

GLBB didefinisikan sebagai gerak suatu benda pada lintasan garis lurus dengan percepatan tetap.  Maksud dari percepatan tetap yaitu percepatan percepatan yang besar dan arahnya tetap.

untuk lebih lengkapnya buka http://fisikarudy.com/pelajaran/glb/

Dinamika gerak lurus dan melingkar

May 13, 2010

Dinamika Gerak adalah cabang fisika yang mempelajari gerak benda dengan memperhatikan penyebabnya. Penyebab benda dapat bergerak dapat berupa tarikan atau dorongan. Dorongan atau tarikan ini dalam fisika disebut gaya.

A. Hukum I Newton

Benda yang diam bila tak ada dorongan atau tarikan akan tetap diam.

Untuk menghentikan mobil, perlu gaya dorong ke belakang. Di rem.

Penumpang akan tersentak ke belakang bila tiba-tiba motor dijalankan dengan cepat.

B.      Hukum II Newton

Jika pada sebuah benda bekerja suatu gaya atau lebih, maka benda akan mengalami perubahan kecepatan atau timbul percepatan pada benda.

Menurut Newton:

Percepatan yang dihasilkan oleh Resultan gaya pada sebuah benda sebanding dan searah dengan resultan gaya tersebut dan berbanding terbalik dengan masa benda.

Secara matematis ditulis: atau    SF  = m.a

Dengan  SF = resultan gaya,  m = massa dan a = percepatan

Satuan :  dari rumus    SF  = m.a  , diperoleh

= kg.m/s2

= Newton

C. Hukum III Newton

Apabila benda pertama memberi gaya aksi pada benda kedua, maka benda kedua akan memberi reaksi pada benda pertama dengan besar yang sama tetapi arahnya berlawanan.

  • Gaya Normal

Gaya normal  adalah gaya yang keluar tegak lurus dari bidang persentuhan antara dua benda.

Jika Anda dapat menggambarkan gaya aksi reaksi gambar (a) di atas, sebenarnya Anda telah menggambarkan gaya normal.

  • Gaya Gesek

Seorang Anak bermain dengan papan seluncur. Mula-mula mendorongnya, makin lama makin lambat hingga berhenti. Mengapa papan seluncur dapat berhenti?

Pada saat papan seluncur bergerak, selama geraknya roda dan lantai bergesekan. Gaya gesekan ini melawan arah gerak papan seluncur, sehingga laju papan diperlambat, sampai akhirnya berhenti.

Gaya gesek dalam keadaan diam disebut gaya gesekan statis. Gaya gesekan statis nilainya berubah-ubah dan menjadi maksimum pada saat benda tepat akan bergerak.

Gaya gesek dalam keadaan bergerak disebut gaya gesek kinetis dan nilainya tetap.

Gaya gesek statis maksimum dirumuskan:

Gaya gesek kinetis dirumuskan:

Dimana  fs = gaya gesek statis,

fk = gaya gesek kinetis

ms = koefisien gesekan statis

mk = koefisien gesekan kinetis

N  = gaya normal

W = berat benda

Gerak melingkar

Dalam bagian percepatan kita telah melihat bahwa percepatan timbul dari perubahan kecepatan. Pada contoh gerak jatuh bebas, perubahan kecepatan yang terjadi hanya menyangkut besarnya saja, sedangkan arahnya tidak. Untuk partikel yang bergerak melingkar dengan laju konstan, arah vektor kecepatan berubah terus menerus, tetapi besarnya tidak. Gerak ini disebut gerak melingkar beraturan (GMB)

Dalam gerak lurus anda mengenal besaran perpindahan (linear) dan kecepatan (linear), keduanya termasuk besaran vektor. Dalam gerak melingkar anda akan mengenal juga besaran yang mirip dengan itu, yaitu perpindahan sudut dan kecepatan sudut, keduanya juga termasuk besaran vektor.

Besaran fisis pada GMB

a. Besaran Sudut (Ø)

Besar sudut Ø dinyatakan dalam derajat tetapi pada gerak melingkar beraturan ini dinyatakan dalam radian. Satu radian (rad) adalah sudut dimana panjang busur lingkaran sama dengan jari-jari lingkaran tersebut (r). Jika s = r, Ø bernilai 1 rad.

Secara umum besaran sudut Ø dituliskan :

Ø = s / r

dimana s = 2∏ r , sehingga Ø = 2∏ rad

b. Kecepatan dan kelajuan Sudut (ω)

Pada gerak melingkar, besaran yang menyatakan seberapa jauh benda berpindah (s) dalam selang waktu tertentu (t) disebut kecepatan anguler atau kecepatan sudut (ω). Kecepatan sudut ini terbagi atas kecepatan sudut rata-rata dan kecepatan sudut sesaat.

c. Periode (T)

Waktu yang dibutuhkan oleh suatu benda untuk bergerak satu putaran disebut periode (T). Waktu yang dibutuhkan untuk menempuh satu putaran dinyatakan oleh :

T = perpindahan sudut / kecepatan sudut

T = 2Π / ω dimana 2Π = perpindahan sudut (anguler) untuk satu putaran.

Jika jumlah putaran benda dalam satu sekon dinyatakan sebagai frekuensi (f) maka diperoleh hubungan :

T = 1 / f dimana f = frekuensi dengan satuan 1/s atau Hertz (Hz).

d. Kecepatan dan kelajuan linear (v)

Kecepatan linear didefinisikan sebagai hasil bagi panjang lintasan linear yang ditempuh dengan selang waktu tempuhnya. Panjang lintasan dalam gerak melingkar yaitu keliling lingkaran 2Π.r

Jika selang waktu yang diperlukan untuk menempuh satu putaran adalah 1 periode (T), maka :

Kecepatan linear dirumuskan : v = 2Π.r / T atau v = ω.r

Kecepatan linear ( v) memiliki satuan m/s, r = jari-jari lintasan, dengan satuan meter dan ω = kecepatan sudut dalam satuan rad/s

e. Percepatan Sentripetal

Pada saat anda mempelajari gerak lurus beraturan sudah mengetahui bahwa percepatan benda sama dengan nol. Benarkah kalau kita juga mengatakan percepatan benda dalam gerak melingkar beraturan sama dengan nol? Dari gambar di atas diketahui bahwa arah kecepatan linear pada gerak melingkar beraturan selalu menyinggung lingkaran. Karena itu, kecepatan linear disebut juga kecepatan tangensial.

Sekarang kita akan mempelajari apakah vektor percepatan pada benda yang bergerak melingkar beraturan nol atau tidak.Dari gambar di atas tampak bahwa vektor kecepatan linear memiliki besar sama tetapi arah berbeda-beda. Oleh karena itu kecepatan linear selalu berubah sehingga harus ada percepatan. Dari gambar di atas tampak bahwa arah percepatan selalu mengarah ke pusat lingkaran dan selalu tegak lurus dengan kecepatan linearnya. Percepatan yang selalu tegak lurus terhadap kecepatan linearnya dan mengarah ke pusat lingkaran ini disebut percepatan sentripetal.

Suhu dan Kalor

May 13, 2010

Suhu adalah derajat panas atau dingin suatu zat.
Sifat Termometrik adalah sebagi dasar pengukur suhu suatu zat, yaitu kepekaan suatu zat terhedap perubahan suhu. Misalnya, volume benda bertambah jika suhunya naik, warna benda berubah jika suhunya berubah jika suhunya berubah, hambatan jenis berubah jika suhunya berubah, dan lain-lain.

Alat pengukur suhu adalah Termometer.
Secara Umum Termometer terbagi tiga, yaitu Termometer Celcius, Termometer Reamur, Termometer Kelvin dan Termometer Fahrenheit.
Untuk menentukan system skala suhu digunakan titik acuan bawah dan titik acuan atas. Titik acuan bawah yaitu titik lebur es pada tekanan 1 atm, sedangkan titik acuan atas adalah suhu titik didih air pada tekanan 1 atm.

Kalor adalah salah satu bentuk energi yang dapat berpindah karena perbedaan suhu.
Satuan kalor adalah joule (J), satuan yang lain adalah kalori (kal), 1 kal adalah jumlah panas yang diperlukan untuk menaikkan suhu 10 C pada 1 gram air.
Kapasitas Kalor adalah jumlah kalor yang diperlukan untuk menaikkan suhu benda satu satuan suhu.
Kalor Jenis (panas jenis) adalah kapasitas kalori tiap satuan massa.

Perpindahan Kalor ada tiga macam yaitu Konduksi, Konveksi, dan Radiasi.
Konduksi (hantaran panas) adalah rambatan kalor yang tidak di ikuti perpindahan massa.
Konveksi (aliran panas) adalah rambatan kalor yang mengikuti perpindahan partikel-partikel zat perantara.
Radiasi (pancaran kalor) adalah perpindahan kalor yang tidak memerlukan zat perantara.

alat yang biasa digunakan untuk pengukur panas adalah termometer

Perambatan kalor

May 13, 2010

Kalor dapat merambat melalui tiga macam cara yaitu:

1. Konduksi

Perambatan kalor tanpa disertai perpindahan bagian-bagian zat perantaranya, biasanya terjadi pada benda padat.

H = K . A . (DT/ L)

H = jumlah kalor yang merambat per satuan waktu
DT/L = gradien temperatur (�K/m)
K = koefisien konduksi
A = luas penampang (m�)
L = panjang benda (m)

2. Konveksi

Perambatan kalor yang disertai perpindahan bagian-bagian zat, karena perbedaan massa jenis.

H = K . A . DT

H = jumlah kalor yang merambat per satuan waktu
K = koefisien konveksi
DT = kenaikan suhu (�K)

3. Radiasi

Perambatan kalor dengan pancaran berupa gelombang-gelombang elektromagnetik.

Pancaran kalor secara radiasi mengikuti Hukum Stefan Boltzmann:

W = e . s . T4

W = intensitas/energi radiasi yang dipancarkan per satuan luas per satuan waktu
s = konstanta Boltzman =5,672 x 10-8 watt/cm2.�K4
e = emisivitas (o < e < 1) T = suhu mutlak (�K)

lihat selengkapnya dan baca ini

Optik geometri dan Alat-alat Optik

May 13, 2010

Kalau kita membahas Optic berarti membahas tentang konsep cahaya. Teori Cahaya ada dua konsep fisika yang dipakai, yaitu Cahaya dianggap sebagai partikel dan Cahaya sebagai Gelombang. Optika adalah ilmu yang membahas tentang konsep cahaya sebagai gelombang. Optika dibagi menjadi Optika Geometri (pemantulan dan Pembiasan) dan Optika Fisis (Difraksi, interferensi atau polarisasi).

Terdapat tiga prinsip dalam Optika Geometri yaitu bentuk lintasan cahaya, Hukum Pemantulan dan Hukum Pmbiasan.

PEMANTULAN CAHAYA

Pada medium Homogen Cahaya merambat lurus. Pemantulan adalah pengembalian dari suatu berkas cahaya ketika bertemu dengan bidang batas antara dua medium.

Hukum Pemantulan.

Hukum Pemantulan menyatakan sebagai berikut :

  1. Sinar datang, sinar pantul, dan garsi Normal terletak dalam satu bidang datar.
  2. Sudut datang (i) sama dengan sudut pantul (r)

  1. PEMANTULAN PADA CERMIN
  • Pemantulan PadaCermin datar

Cermin Lengkung

Alat-alat optik

Cermin dan lensa serta prinsip kerjanya memberikan sarana pemahaman bagi pemanfaatannya untuk mempermudah dan membantu kehidupan manusia. Alat-alat yang bekerja berdasarkan prinsip optik (cermin dan lensa) digolongkan sebagai alat optik.

Mata

Salah satu alat optik alamiah yang merupakan salah satu anugerah dari Sang Pencipta adalah mata. Di dalam mata terdapat lensa kristalin yang terbuat dari bahan bening, berserat, dan kenyal. Lensa kristalin atau lensa mata berfungsi mengatur pembiasan yang disebabkan oleh cairan di depan lensa. Cairan ini dinamakan aqueous humor. Intensitas cahaya yang masuk ke mata diatur oleh pupil.

Daya Akomodasi Mata.

Perlu diketahui bahwa jarak antara lensa mata dan retina selalu tetap. Sehingga dalam melihat benda-benda pada jarak tertentu perlu mengubah kelengkungan lensa mata. Untuk mengubah kelengkungan lensa mata, yang berarti mengubah jarak titik fokus lensa merupakan tugas otot siliar. Hal ini dimaksudkan agar bayangan yang dibentuk oleh lensa mata selalu jatuh di retina. Pada saat mata melihat dekat lensa mata harus lebih cembung (otot-otot siliar menegang) dan pada saat melihat jauh lensa harus lebih pipih (otot-otot siliar mengendor). Peristiwa perubahan-perubahan ini disebut daya akomodasi.

Daya akomodasi (daya suai) adalah kemampuan otot siliar untuk menebalkan atau memipihkan kecembungan lensa mata yang disesuaikan dengan dekat atau jauhnya jarak benda yang dilihat.
Manusia memiliki dua batas daya akomodasi (jangkauan penglihatan) yaitu :
1. titik dekat mata (punctum proximum) adalah jarak benda terdekat di depan mata yang masih dapat dilihat dengan jelas. Untuk mata normal (emetropi) titik dekatnya berjarak 10cm s/d 20cm (untuk anak-anak) dan berjarak 20cm s/d 30cm (untuk dewasa). Titik dekat disebut juga jarak baca normal.
2. titik jauh mata (punctum remotum) adalah jarak benda terjauh di depan mata yang masih dapat dilihat dengan jelas. Untuk mata normal titik jauhnya adalah “tak terhingga”.

Cacat Mata
Berkurangnya daya akomodasi mata seseorang dapat menyebabkan berkurangnya kemampuan mata untuk melihat benda pada jarak tertentu dengan jelas. Cacat mata yang disebabkan berkurangnya daya akomodasi, antara lain rabun jauh, rabun dekat dan rabun dekat dan jauh. Selain tiga jenis itu, masih ada jenis cacat mata lain yang disebut astigmatisma.
Cacat mata dapat dibantu dengan kacamata. Kacamata hanya berfungsi membantu penderita cacat mata agar bayangan benda yang diamati tepat pada retina. Kacamata tidak dapat menyembuhkan cacat mata. Ukuran yang diberikan pada kacamata adalah kekuatan lensa yang digunakan. Kacamata berukuran -1,5, artinya kacamata itu berlensa negatif dengan kuat lensa -1,5 dioptri.

Rabun jauh (miopi)


Rabun jauh yaitu mata tidak dapat melihat benda-benda jauh dengan jelas, disebut juga mata perpenglihatan dekat (terang dekat/mata dekat).

Rabun dekat (hipermetropi)

Rabun dekat tidak dapat melihat jelas benda dekat, disebut juga mata perpenglihatan jauh (terang jauh/mata jauh).

Mata tua (presbiopi)

Mata tua tidak dapat melihat dengan jelas benda-benda yang sangat jauh dan benda-benda pada jarak baca normal, disebabkan daya akomodasi telah berkurang akibat lanjut usia (tua). Pada mata tua titik dekat dan titik jauh keduanya telah bergeser.

Astigmatisma (mata silindris)

Astigmatisma disebabkan karena kornea mata tidak berbentuk sferik (irisan bola), melainkan lebih melengkung pada satu bidang dari pada bidang lainnya. Akibatnya benda yang berupa titik difokuskan sebagai garis.

Kamera

Kamera digunakan manusia untuk merekam kejadian penting atau kejadian yang menarik.

Bagian-bagian kamera mekanik (bukan otomatis) menurut kegunaan fisis :

  • lensa cembung berfungsi untuk membentuk bayangan dari benda yang difoto
  • diafragma berfungsi untuk membuat sebuah celah/lubang yang dapat diatur luasnya
  • aperture yaitu lubang yang dibentuk diafragma untuk mengatur banyak cahaya
  • shutter pembuka/penutup “dengan cepat” jalan cahaya yang menuju ke pelat film
  • pelat film berfungsi sebagai layar penangkap/perekam bayangan.Setiap benda yang di foto, terletak pada jarak yang lebih besar dari dua kali jarak fokus di depan lensa kamera, sehingga bayangan yang jatuh pada pelat film memiliki sifat nyata, terbalik dan diperkecil. Untuk memperoleh bayangan yang tajam dari benda-benda pada jarak yang berbeda-beda, lensa cembung kamera dapat digeser ke depan atau ke belakang.

Lup (kaca pembesar)

Lup (kaca pembesar) dipakai untuk melihat benda-benda kecil agar tampak lebih besar dan jelas. Oleh tukang arloji, lup dipakai agar bagian jam yang diperbaikinya kelihatan lebih besar dan jelas.

Melihat dengan mata tak berakomodasi
Untuk melihat tanpa berakomodasi maka lup harus membentuk bayangan di jauh tak berhingga. Benda yang dilihat harus diletakkan tepat pada titik fokus lup. Perhatikan Gambar dibawah !

Keuntunganya adalah untuk pengamatan lama mata tidak cepat lelah, sedangkan kelemahannya dari segi perbesaran berkurang. Sifat bayangan yang dihasilkan maya, tegak dan diperbesar.
Perbesaran anguler yang didapatkan adalah :
M = PP/f
Keterangan :
M = perbesaran lup
PP= titik dekat mata
f = jarak titik fokus lensa

Melihat dengan mata berakomodasi
Agar mata dapat melihat dengan berakomodasi maksimum, maka bayangan yang dibentuk oleh lensa harus berada di titik dekat mata (PP). Benda yang dilihat harus terletak antara titik fokus dan titik pusat sumbu lensa.Perhatikan Gambar di bawah !

Kelemahannya untuk pengamatan lama mata cepat lelah, sedangkan keuntungannya dari segi perbesaran bertambah.
Sifat bayangan yang dihasilkan maya, tegak dan diperbesar.
Perbesaran anguler yang didapatkan adalah :
M = PP/f + 1
Keterangan :
M = perbesaran lup
PP= titik dekat mata
f = jarak titik fokus lensa

Mikroskop

Penggunaan lup untuk mengamati benda-benda kecil ada batasnya. Jika kita menggunakan lup yang berjarak fokus kecil untuk mendapatkan perbesaran yang lebih besar, bayangan yang diperoleh tidak sempurna.

Dalam subbab ini akan dipelajari mikroskop cahaya yang proses kerjanya memanfaatkan lensa cembung dengan menerapkan pembiasan cahaya.

Dasar kerja mikroskopObyek atau benda yang diamati harus diletakkan di antara Fob dan 2Fob, sehingga lensa obyektif membentuk bayangan nyata, terbalik dan diperbesar. Bayangan yang dibentuk lensa obyektif merupakan benda bagi lensa okuler. Lensa okuler berperan seperti lup yang dapat diatur/digeser-geser sehingga mata dapat mengamati dengan cara berakomodasi atau tidak berakomodasi.Pengamatan dengan akomodasi maksimum
Untuk pengamatan dengan akomodasi maksimum, maka bayangan yang dibentuk oleh lensa okuler harus jatuh pada titik dekat mata (PP)Perbesaran yang diperoleh adalah merupakan perbesaran oleh lensa obyektif dan lensa okuler yaitu:
M = Moby x Mok
M = (Si/So) x (PP/f okuler + 1)
Pengamatan dengan mata tidak berakomodasi
Untuk pengamatan dengan mata tidak berakomodasi, maka bayangan yang dibentuk oleh lensa okuler harus berada pada titik jauh mata.Perbesaran yang diperoleh adalah merupakan perbesaran oleh lensa obyektif dan lensa okuler yaitu:
M = Moby x Mok
M = (Si/So) x (PP/f okuler)

Panjang Mikroskop
Panjang mikroskop adalah jarak lensa obyektif terhadap lensa okuler dirumuskan :
Untuk mata berakomodasi
d = Si (ob) + So (ok)
Keterangan :
d = panjang mikroskop
Si (ob) = jarak bayangan lensa obyektif
So (ok) = jarak benda lensa okuler

Untuk mata tidak berakomodasi
d = Si (ob) + f (ok)
Keterangan :
d = panjang mikroskop
Si (ob) = jarak bayangan lensa obyektif
f (ok) = jarak fokus lensa okuler

Teropong (Teleskop)

A. Teropong bintang

Teropong bintang disebut juga teropong astronomi.

– terdiri dari 2 buah lensa cembung.

– jarak fokus lensa obyektif lebih besar dari jarak fokus lensa okuler.

Penggunaan dengan mata tidak berkomodasi

Untuk penggunaan dengan mata tidak berkomodasi, bayangan yang dihasilkan oleh lensa obyektif jatuh di titik fokus lensa okuler.

Perbesaran anguler yang diperoleh adalah :

M = f (ob) / f (ok)

Panjang teropong adalah :

M = f (ob) + f (ok)

Penggunaan dengan mata berkomodasi maksimal

Untuk penggunaan dengan mata berkomodasi maksimal bayangan yang dihasilkan oleh lensa obyektif jatuh diantara titik pusat bidang lensa dan titik fokus lensa okuler.

Perbesaran anguler dapat diturunkan sama dengan penalaran pada pengamatan tanpa berakomodasi dan didapatkan :

M = f (ob) / So (ok)

Panjang teropong adalah :

M = f (ob) + So (ok)

B.  Teropong Bumi

Teropong bumi disebut juga teropong medan.
Terdiri dari 3 buah lensa cembung yaitu lensa obyektif, lensa okuler dan lensa pembalik.

Dengan adanya lensa pembalik panjang teropong dirumuskan menjadi :

d = f (ob) + 4f (pembalik) + f (ok)

Lensa pembalik berfungsi untuk membalikkan arah cahaya sebelum melewati lensa okuler, lensa okuler berfungsi seperti lup membentuk bayangan bersifat maya, tegak, dan diperbesar.Adanya lensa pembalik tidak mempengaruhi perbesaran akhir, bayangan akhir bersifat maya, tegak dan diperbesar dengan perbesaran :
M = d = f (ob) / f (ok)

C. Teropong prisma (binokuler)

Teropong prisma terdiri atas dua pasang lensa cembung (sebagai lensa objektif dan lensa okuler) dan dua pasang prisma kaca siku-siku samakaki. Sepasang prisma yang diletakkan berhadapan, berfungsi untuk membelokkan arah cahaya dan membalikkan bayangan.

Beberapa keuntungan praktis dari teropong prisma dibandingkan teropong yang lain :
1. Menghasilkan bayangan yang terang, karena berkas cahaya dipantulkan sempurna oleh bidang-bidang prisma.

2. Dapat dibuat pendek sekali, karena sinarnya bolak-balik 3 kali melalui jarak yang sama (dipantulkan 4 kali oleh dua prisma).
3. Daya stereoskopis diperbesar, dua mata melihat secara bersamaan
4. Dengan adanya prisma arah cahaya telah dibalikkan sehingg terlihat bayangan akhir bersifat maya, diperbesar dan tegak.

D. Teropong pantul astronomi .

Teropong pantul terdiri dari sebuah cermin cekung berjarak fokus besar sebagai cermin objektif, sebuah lensa cembung sebgai lensa okuler dan sebuah cermin datar sebagai pembelok arah cahaya dari cermin objektif ke lensa okuler.

E. Teropong panggung

Teropong panggung terdiri dari dua lensa, yaitu :
– lensa obyektif berup lensa cembung
– lensa okuler berupa lensa cekung

maka panjang teropong adalah :
d = f (ob) – f (ok)Perbesaran anguler yang didapatkan adalah sama dengan perbesaran pada teropong bintang ataupun juga teropong bumi.
M = f (ob) / f

Listrik Dinamis

May 13, 2010

listrik dinamis

Listrik Dinamis adalah listrik yang dapat bergerak. cara mengukur kuat arus pada listrik dinamis adalah muatan listrik dibagai waktu dengan satuan muatan listrik adalah coulumb dan satuan waktu adalah detik. kuat arus pada rangkaian bercabang sama dengan kuata arus yang masuk sama dengan kuat arus yang keluar. sedangkan pada rangkaian seri kuat arus tetap sama disetiap ujung-ujung hambatan. Sebaliknya tegangan berbeda pada hambatan. pada rangkaian seri tegangan sangat tergantung pada hambatan, tetapi pada rangkaian bercabang tegangan tidak berpengaruh pada hambatan. semua itu telah dikemukakan oleh hukum kirchoff yang berbunyi “jumlah kuat arus listrik yang masuk sama dengan jumlah kuat arus listrik yang keluar”. berdasarkan hukum ohm dapat disimpulkan cara mengukur tegangan listrik adalah kuat arus × hambatan. Hambatan nilainya selalu sama karena tegangan sebanding dengan kuat arus. tegangan memiliki satuan volt(V) dan kuat arus adalah ampere (A) serta hambatan adalah ohm.

Hukum Ohm

Aliran arus listrik dalam suatu rangkaian tidak berakhir pada alat listrik. tetapi melingkar kernbali ke sumber arus. Pada dasarnya alat listrik bersifat menghambat alus listrik.

RANGKAIAN SERI

Untuk memperoleh hambatan total dari sejumlah n resistor yang disusun seri, maka digunakan persamaan berikut :

Untuk besarnya arus pada resistor seri, ditentukan dari hukum Ohm :
I = V / RT (Ampere) (arus pada semua R sama besar) RT adalah R total /keseluruhan dari rangkian tersebut, maka :
Besarnya tegangan ditentukan Hukum Kirrchhoff II (rangkaian Seri) menyatakan bahwa : Jumlah seluruh Tegangan jatuh (jumlah tegangan pada tiap–tiap beban /R) dalam rangkaian seri sama dengan total tegangan yang terpasang pada rangkaian seri tersebut.
RANGKAIAN PARALEL
Hambatan total tahanan paralel adalah merupakan perkalian dari tiap-tiap tahanan dibagi dengan jumlah tahanan.
Hukum Kirchhoff I (rangkaian Paralel) menyatakan : Bahwa besarnya arus yang meninggalkan suatu titik percabangan dalam suatu rangkian adalah sama dengan arus yang menuju titik percabangan tersebut.
Tegangan yang melintas di semua resistor paralel adalah sama besar.
V1 = tegangan pada R1

V2 = tegangan pada R2

V = tegangan sumber

Hambatan Kawat Penghantar

Berdasarkan percobaan di atas. dapat disimpulkan bahwa besar hambatan suatu kawat penghantar 1. Sebanding dengan panjang kawat penghantar. artinya makin panjang penghantar, makin besar hambatannya, 2. Bergantung pada jenis bahan kawat (sebanding dengan hambatan jenis kawat), dan 3. berbanding terbalik dengan luas penampang kawat, artinya makin kecil luas penampang, makin besar hambatannya.

1. Arus
Arus listrik adalah banyaknya muatan listrik yang mengalir tiap satuan waktu. Muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya.

I = Q/T

Pada zaman dulu, Arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita sekarang tahu bahwa arus listrik itu dihasilkan dari aliran elektron yang bermuatan negatif ke arah yang sebaliknya.

Satuan SI untuk arus listrik adalah ampere (A).

2. Hambatan
Hambatan listrik adalah perbandingan antara tegangan listrik dari suatu komponen elektronik (misalnya resistor) dengan arus listrik yang melewatinya. Hambatan listrik dapat dirumuskan sebagai berikut:

R = V/I

atau

di mana V adalah tegangan dan I adalah arus.

Satuan SI untuk Hambatan adalah Ohm (R).

3. Tegangan
Tegangan listrik (kadang disebut sebagai Voltase) adalah perbedaan potensi listrik antara dua titik dalam rangkaian listrik, dinyatakan dalam satuan volt. Besaran ini mengukur energi potensial sebuah medan listrik untuk menyebabkan aliran listrik dalam sebuah konduktor listrik. Tergantung pada perbedaan potensi listrik satu tegangan listrik dapat dikatakan sebagai ekstra rendah, rendah, tinggi atau ekstra tinggi.

V= I .R

Satuan SI untuk Tegangan adalah volt (V).

4. Hukum OHm
Pada dasarnya sebuah rangkaian listrik terjadi ketika sebuah penghantar mampu dialiri electron bebas secara terus menerus. Aliran yang terus-menerus ini yang disebut dengan arus, dan sering juga disebut dengan aliran, sama halnya dengan air yang mengalir pada sebuah pipa.

untuk lebih lengkapnya

Hukum kirchoff

May 13, 2010

IX. HUKUM KIRCHOFF

Hukum Kirchoff I :

Jumlah aljabar arus yang masuk ke dalam suatu titik cabang suatu rangkaian adalah nol.i=0(6-5)Persamaan (6-5) ini diartikan bahwa arus yang menuju titik cabang diberi tanda positif dan yang meninggalkan titik diberi tanda negatif. “ Jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan”.  Secara matematis dinyatakan

Hukum Kirchoff II.

Hukum Kirchoff secara keseluruhan ada 2, dalam sub ini akan dibahas tentang hukum kirchoff 2. Hukum  Kirchoff 2 dipakai untuk menentukan kuat arus yang mengalir pada rangkaian bercabang dalam keadaan tertutup (saklar dalam keadaan tertutup).
Perhatikan gambar berikut!
Hukum Kirchoff 2 berbunyi : ” Dalam rangkaian tertutup, Jumlah aljabbar GGL (E) dan jumlah penurunan potensial sama dengan nol”. Maksud dari jumlah penurunan potensial sama dengan nol adalah tidak ada energi listrik yang hilang dalam rangkaian tersebut, atau dalam arti semua energi listrik bisa digunakan atau diserap.

Dari gambar diatas kuat arus yang mengalir dapat ditentukan dengan menggunakan beberapa aturan sebagai berikut :

  • Tentukan arah putaran arusnya untuk masing-masing loop.
  • Arus yang searah dengan arah perumpamaan dianggap positif.
  • Arus yang mengalir dari kutub negatif ke kutup positif di dalam elemen dianggap positif.
  • Pada loop dari satu titik cabang ke titik cabang berikutnya kuat arusnya sama.
  • Jika hasil perhitungan kuat arus positif maka arah perumpamaannya benar, bila negatif berarti arah arus berlawanan dengan arah pada perumpamaan